论文标题

用VAE学习平坦的潜伏

Learning Flat Latent Manifolds with VAEs

论文作者

Chen, Nutan, Klushyn, Alexej, Ferroni, Francesco, Bayer, Justin, van der Smagt, Patrick

论文摘要

测量数据点之间的相似性通常需要域知识,可以通过依靠无监督的方法(例如潜伏模型)来补偿各个部分知识,在这种模型中,在更紧凑的潜在空间中估计相似性/距离。普遍存在的是使用欧几里得公制,该公制的缺点是忽略了关于解码器中存储的数据相似性的信息,如Riemannian几何形状的框架所捕获的那样。我们提出了一个变异自动编码器框架的扩展,可以学习平坦的潜在流形,其中欧几里得公制是数据点之间相似性的代理。这是通过将潜在空间定义为riemannian歧管,并将度量张量定为缩放的身份矩阵来实现。此外,我们用最近提出的,更具表现力的分层构架替换了杂物自动编码器中通常使用的紧凑型先验,并将学习问题作为约束优化问题提出。我们在一系列数据集上评估了我们的方法,包括视频跟踪基准测试,我们的无监督方法的性能靠近最新的监督方法,同时保留了基于直线方法的计算效率。

Measuring the similarity between data points often requires domain knowledge, which can in parts be compensated by relying on unsupervised methods such as latent-variable models, where similarity/distance is estimated in a more compact latent space. Prevalent is the use of the Euclidean metric, which has the drawback of ignoring information about similarity of data stored in the decoder, as captured by the framework of Riemannian geometry. We propose an extension to the framework of variational auto-encoders allows learning flat latent manifolds, where the Euclidean metric is a proxy for the similarity between data points. This is achieved by defining the latent space as a Riemannian manifold and by regularising the metric tensor to be a scaled identity matrix. Additionally, we replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one---and formulate the learning problem as a constrained optimisation problem. We evaluate our method on a range of data-sets, including a video-tracking benchmark, where the performance of our unsupervised approach nears that of state-of-the-art supervised approaches, while retaining the computational efficiency of straight-line-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源