论文标题

立方NLS运输的高斯措施的准不变,并在$ \ mathbf {t} $上进行三阶分散。

Quasi-Invariance of Gaussian Measures Transported by the Cubic NLS with Third-Order Dispersion on $\mathbf{T}$

论文作者

Debussche, Arnaud, Tsutsumi, Yoshio

论文摘要

我们考虑了非线性schrödinger(nls)方程,并证明具有协方差的高斯度量$(1- \ partial_x^2)^{ - α} $ on $ l^2(\ mathbf t)$ is quasi-Invariant用于$α> 1/2 $的相关流量。这是敏锐的,并改善了以前在\ cite {ott}中获得的结果,其中获得了$α> 3/4 $的值。同样,我们的方法是完全不同的,更简单的,它基于radon-nikodym衍生物的显式公式。我们以与\ cite {cruz1}和\ cite {cruz2}相同的精神获得了后者的明确公式。这些论点是一般的,可以用于其他汉密尔顿方程。

We consider the Nonlinear Schrödinger (NLS) equation and prove that the Gaussian measure with covariance $(1-\partial_x^2)^{-α}$ on $L^2(\mathbf T)$ is quasi-invariant for the associated flow for $α>1/2$. This is sharp and improves a previous result obtained in \cite{OTT} where the values $α>3/4$ were obtained. Also, our method is completely different and simpler, it is based on an explicit formula for the Radon-Nikodym derivative. We obtain an explicit formula for this latter in the same spirit as in \cite{Cruz1} and \cite{Cruz2}. The arguments are general and can be used to other Hamiltonian equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源