论文标题

爱因斯坦的波动关系和吉布斯州远离平衡

Einstein's fluctuation relation and Gibbs states far from equilibrium

论文作者

Lazarescu, Alexandre

论文摘要

我们检查了一类的一维晶格基因,其特征是梯度条件,该梯度保证了吉布斯型同质固定状态的存在。我们展示了如何在定义适当的边界条件下导致在时间和空间逆转下对系统的特殊对称性,从而根据保守数量的固定电流的较大偏差函数改写,从而在储层交换下产生了新的波动关系,与Gallavotti-Cohen Symmetry无关。然后,我们表明这种关系可以解释为无等准的和非线性的泛化爱因斯坦的关系,从而导致小储层不平衡的极限onsager互惠关系。最后,我们用两个例子说明了结果。

We examine a class of one-dimensional lattice-gases characterised by a gradient condition which guarantees the existence of Gibbs-type homogeneous stationary states. We show how, defining appropriate boundary conditions, this leads to a special symmetry of the system under time and space reversal which, rephrased in terms of the large deviations function of stationary currents of conserved quantities, yields a novel fluctuation relation under reservoir exchange, unrelated to the Gallavotti-Cohen symmetry. We then show that this relation can be interpreted as a nonequilibrium and nonlinear generalisation Einstein's relation, leading to Onsager reciprocity relations in the limit of a small reservoir imbalance. Finally, we illustrate our results with two examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源