论文标题

超导体的临界温度预测:差异贝叶斯神经网络方法

Critical Temperature Prediction for a Superconductor: A Variational Bayesian Neural Network Approach

论文作者

Le, Thanh Dung, Noumeir, Rita, Quach, Huu Luong, Kim, Ji Hyung, Kim, Jung Ho, Kim, Ho Min

论文摘要

近年来,许多研究都集中在使用经验机器学习方法上,以提取有关超导体材料的结构性关系的有用见解。值得注意的是,当超导性数据通常来自昂贵且艰巨的实验性工作时,这些方法会带来极端的好处。但是,该评估不能仅基于开放的黑盒机器学习,该学习不能完全解释,因为它可以理解为什么该模型可以适当响应超导性特征分析的一组输入数据,例如临界温度。这项研究的目的是描述和检查一种预测日本国家材料科学研究所获得的超级con数据库的超导过渡温度$ T_C $的替代方法。我们使用超导体化学元素和公式来预测$ t_c $的生成机器学习框架,称为变异贝叶斯神经网络。在这种情况下,论文在焦点中的重要性是双重的。首先,为了提高可解释性,我们采用了一种变异推断,以近似生成模型的潜在参数空间中的分布。它统计捕获了超导体化合物的相互关联和;然后,给出$ T_C $的估计。其次,一种随机优化算法,它包含一个名为Monte Carlo Sampler的统计推断,用于最终近似提出的推理模型,最终确定和评估预测性能。

Much research in recent years has focused on using empirical machine learning approaches to extract useful insights on the structure-property relationships of superconductor material. Notably, these approaches are bringing extreme benefits when superconductivity data often come from costly and arduously experimental work. However, this assessment cannot be based solely on an open black-box machine learning, which is not fully interpretable, because it can be counter-intuitive to understand why the model may give an appropriate response to a set of input data for superconductivity characteristic analyses, e.g., critical temperature. The purpose of this study is to describe and examine an alternative approach for predicting the superconducting transition temperature $T_c$ from SuperCon database obtained by Japan's National Institute for Materials Science. We address a generative machine-learning framework called Variational Bayesian Neural Network using superconductors chemical elements and formula to predict $T_c$. In such a context, the importance of the paper in focus is twofold. First, to improve the interpretability, we adopt a variational inference to approximate the distribution in latent parameter space for the generative model. It statistically captures the mutual correlation of superconductor compounds and; then, gives the estimation for the $T_c$. Second, a stochastic optimization algorithm, which embraces a statistical inference named Monte Carlo sampler, is utilized to optimally approximate the proposed inference model, ultimately determine and evaluate the predictive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源