论文标题
磁旋转不稳定对原星磁盘中晶粒生长的影响:I。相关的湍流特性
Impact of magneto-rotational instability on grain growth in protoplanetary disks: I. Relevant turbulence properties
论文作者
论文摘要
原星盘的湍流会引起粉尘颗粒之间的碰撞,从而促进谷物的生长。我们研究了在磁旋转不稳定(MRI)产生的湍流的背景下,我们研究了获得晶粒碰撞速度的两个基本假设 - 动能光谱和湍流自相关时间。对于一系列物理和数值参数,我们进行了MRI和驱动湍流的数值模拟。我们发现湍流$α$参数的收敛不一定意味着能量谱的收敛性。 MRI湍流在很大程度上是电磁阀,为此,我们观察到$ k^{ - 4/3} $的持续动力学光谱。在耗散量表附近超过1个DEX的情况下,对于螺线管驱动的湍流也可以获得同样的情况。该幂律斜率似乎是根据数值分辨率融合的,并且是由于瓶颈效应而引起的。 MRI湍流中的动能在MRI的最快生长模式下达到峰值。相比之下,磁能在耗散尺度上达到峰值。 MRI湍流中的磁能谱没有显示明确的幂律范围,并且在耗散量表附近的大约1个DEX上几乎是恒定的。湍流自相关时间在大尺度上几乎是恒定的,受剪切时间尺度的限制,并在小尺度上显示了接近$ k^{ - 1} $的幂律下降,坡度比涡流交叉时间陡峭。在磁盘尺度上的注射尺度的Kolmogorov湍流的标准图片偏离可能会对晶粒碰撞速度产生重大影响。
Turbulence in the protoplanetary disks induces collisions between dust grains, and thus facilitates grain growth. We investigate the two fundamental assumptions of the turbulence in obtaining grain collisional velocities -- the kinetic energy spectrum and the turbulence autocorrelation time -- in the context of the turbulence generated by the magneto-rotational instability (MRI). We carry out numerical simulations of the MRI as well as driven turbulence, for a range of physical and numerical parameters. We find that the convergence of the turbulence $α$-parameter does not necessarily imply the convergence of the energy spectrum. The MRI turbulence is largely solenoidal, for which we observe a persistent kinetic energy spectrum of $k^{-4/3}$. The same is obtained for solenoidal driven turbulence with and without magnetic field, over more than 1 dex near the dissipation scale. This power-law slope appears to be converged in terms of numerical resolution, and to be due to the bottleneck effect. The kinetic energy in the MRI turbulence peaks at the fastest growing mode of the MRI. In contrast, the magnetic energy peaks at the dissipation scale. The magnetic energy spectrum in the MRI turbulence does not show a clear power-law range, and is almost constant over approximately 1 dex near the dissipation scale. The turbulence autocorrelation time is nearly constant at large scales, limited by the shearing timescale, and shows a power-law drop close to $k^{-1}$ at small scales, with a slope steeper than that of the eddy crossing time. The deviation from the standard picture of the Kolmogorov turbulence with the injection scale at the disk scale height can potentially have a significant impact on the grain collisional velocities.