论文标题

从数据中推断基本机制的逆向技术

Inverse Ising techniques to infer underlying mechanisms from data

论文作者

Zeng, Hong-Li, Aurell, Erik

论文摘要

作为数据科学中的一个问题,反向ISISING(或POTTS)问题是从该分布中从该分布中得出的样本中推断出Ising(或Potts)模型的Gibbs-Boltzmann分布的参数。算法和计算兴趣源于以下事实:此推论任务不能通过最大似然标准有效地完成,因为无法准确,有效地计算分布的归一化常数(分区函数)。另一方面,实际的兴趣来自几种出色的应用,其中最著名的是从同源蛋白质序列表中预测了蛋白质结构中的空间接触。迄今为止,大多数应用程序都用于由动态过程产生的数据,据众所周知,该过程无法满足详细的平衡。因此,没有先验原因可以期望分布是Gibbs-Boltzmann类型的,并且没有先验原因可以期望倒数(或Potts)技术应产生有用的信息。在这篇评论中,我们讨论了可以取得进展的两种类型的问题。我们发现,根据模型参数的不同,实际上,分布接近吉布斯 - 波尔兹曼分布,尽管有底层动力学的非平衡性质。我们还讨论了推断的ISING模型参数与基础动力学的参数之间的关系。

As a problem in data science the inverse Ising (or Potts) problem is to infer the parameters of a Gibbs-Boltzmann distributions of an Ising (or Potts) model from samples drawn from that distribution. The algorithmic and computational interest stems from the fact that this inference task cannot be done efficiently by the maximum likelihood criterion, since the normalizing constant of the distribution (the partition function) can not be calculated exactly and efficiently. The practical interest on the other hand flows from several outstanding applications, of which the most well known has been predicting spatial contacts in protein structures from tables of homologous protein sequences. Most applications to date have been to data that has been produced by a dynamical process which, as far as it is known, cannot be expected to satisfy detailed balance. There is therefore no a priori reason to expect the distribution to be of the Gibbs-Boltzmann type, and no a priori reason to expect that inverse Ising (or Potts) techniques should yield useful information. In this review we discuss two types of problems where progress nevertheless can be made. We find that depending on model parameters there are phases where, in fact, the distribution is close to Gibbs-Boltzmann distribution, a non-equilibrium nature of the under-lying dynamics notwithstanding. We also discuss the relation between inferred Ising model parameters and parameters of the underlying dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源