论文标题

在$(\ mathbb {z}/p)^n $的系数上

On the Coefficients of $(\mathbb{Z}/p)^n$-Equivariant Ordinary Cohomology with Coefficients in $\mathbb{Z}/p$

论文作者

Holler, John, Kriz, Igor

论文摘要

本说明包含对作者先前对$(\ Mathbb {z}/2)^n $ Equivariant普通共同体的系数的概括的概括。 S.Kriz的Algberaic结果使我们能够计算几何固定点光谱的系数$φ^{(\ Mathbb {z}/p)/p)^n} $ h \ mathbb {z}/p _ {(\ mathbb {z}/p)/p)^n} $通过反转任何选择的嵌入$ s^0 \ rightArrow s^{α_i} $,其中$α_i$是非trivialir-trivial Indrivial-norredriblecible表示。我们还计算了$ h \ mathbb {z}/p _ {(\ mathbb {z}/p)^n} $的$ ro(g)^+$ - 分级系数。 (这是“非源性”部分,具有很好的代数描述。)

This note contains a generalization to $p>2$ of the authors' previous calculations of the coefficients of $(\mathbb{Z}/2)^n$-equivariant ordinary cohomology with coefficients in the constant $\mathbb{Z}/2$-Mackey functor. The algberaic results by S.Kriz allow us to calculate the coefficients of the geometric fixed point spectrum $Φ^{(\mathbb{Z}/p)^n}H\mathbb{Z}/p$, and more generally, the $\mathbb{Z}$-graded coefficients of the localization of $H\mathbb{Z}/p_{(\mathbb{Z}/p)^n}$ by inverting any chosen set of embeddings $S^0\rightarrow S^{α_i}$ where $α_i$ are non-trivial irreducible representations. We also calculate the $RO(G)^+$-graded coefficients of $H\mathbb{Z}/p_{(\mathbb{Z}/p)^n}$, which means the cohomology of a point indexed by an actual (not virtual) representation. (This is the "non-derived" part, which has a nice algebraic description.)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源