论文标题
稳定性,孤立的混乱和超级延伸多体相互作用系统
Stability, Isolated Chaos, and Superdiffusion in Nonequilibrium Many-Body Interacting Systems
论文作者
论文摘要
我们证明,范式非平衡多体系统的稳定性和混沌传输特征,即定期踢和相互作用的颗粒,可能会显着偏离预期的全部不稳定和正常混乱扩散的任意强大混乱,任意粒子数量和不同的相互作用案例。我们严格地表明,在后一种一般条件下,存在{\ em完全稳定}轨道,加速器模式(AM)固定点,以动量执行弹道运动。从数值上表明,与混乱的相位空间分离的{\ em“孤立的混沌区”}(ICZ),即使在仅在几个相位空间方向上部分稳定,即使该点部分稳定,但尽管这一点在几个相位空间方向上,并且尽管Kolmogorov-arnolov-arnol'd-moser tori不隔离。含有ICZ的初始集合的平均动能的时间演变表现出{\ em Superdiffusion},而不是正常的混沌扩散。
We demonstrate that stability and chaotic-transport features of paradigmatic nonequilibrium many-body systems, i.e., periodically kicked and interacting particles, can deviate significantly from the expected ones of full instability and normal chaotic diffusion for arbitrarily strong chaos, arbitrary number of particles, and different interaction cases. We rigorously show that under the latter general conditions there exist {\em fully stable} orbits, accelerator-mode (AM) fixed points, performing ballistic motion in momentum. It is numerically shown that an {\em "isolated chaotic zone"} (ICZ), separated from the rest of the chaotic phase space, remains localized around an AM fixed point for long times even when this point is partially stable in only a few phase-space directions and despite the fact that Kolmogorov-Arnol'd-Moser tori are not isolating. The time evolution of the mean kinetic energy of an initial ensemble containing an ICZ exhibits {\em superdiffusion} instead of normal chaotic diffusion.