论文标题
情节积聚受到丰富流出群的约束
Episodic accretion constrained by a rich cluster of outflows
论文作者
论文摘要
Protostars的增生历史仍然广泛神秘,尽管它代表了理解导致恒星形成的原恒星崩溃的最佳方法之一。分子流出在这里用于表征W43-mm1中的原恒星增生阶段。 W43-MM1原始群集产生了足够数量的原始恒星,可以统计地研究单个同质区域中的分子流出。我们使用CO(2-1)和SIO(5-4)线数据程序,用作具有2000 AU分辨率的Alma Mosaic的一部分来搜索ProtoStellar流出,评估环境对这些流出特性的影响,并在W43-mm1中对流出变异性产生约束。我们发现了一个丰富的46个流出裂片的簇,由27个原始恒星驱动,质量为1-100 msun。这些流出叶在内部发展的复杂环境对它们的长度有明确的影响,从而限制了使用流出的动态时间标准作为具有较高动力学和不同条件的云中的弹出时间尺度的代理。我们对流出的位置速度(PV)图进行了详细研究,该图揭示了插图的明显事件。 W43-mm1流出的时间变异性是一种一般趋势,比附近,低至中间质量恒星形成区域更普遍地观察到。在两个弹出物(约500年)之间发现的典型时间尺度与在附近的原恒星中发现的时间尺度一致。如果射血发作性反映了积聚过程中的变异性,那么在高质量恒星形成区域中,原恒星积聚比在附近的云中更容易检测到。吸积事件之间发现的时间尺度可能是由于磁盘不稳定性引起的,这与高质量恒星核心的动态环境引起的流动气体爆发有关。
The accretion history of protostars remains widely mysterious even though it represents one of the best ways to understand the protostellar collapse that leads to the formation of stars. Molecular outflows are here used to characterize the protostellar accretion phase in W43-MM1. The W43-MM1 protocluster host a sufficient number of protostars to statistically investigate molecular outflows in a single, homogeneous region. We used the CO(2-1) and SiO(5-4) line datacubes, taken as part of an ALMA mosaic with a 2000 AU resolution, to search for protostellar outflows, evaluate the influence that the environment has on these outflows' characteristics and put constraints on outflow variability in W43-MM1. We discovered a rich cluster of 46 outflow lobes, driven by 27 protostars with masses of 1-100 Msun. The complex environment inside which these outflow lobes develop has a definite influence on their length, limiting the validity of using outflows' dynamical timescales as a proxy of the ejection timescale in clouds with high dynamics and varying conditions. We performed a detailed study of Position-Velocity (PV) diagrams of outflows that revealed clear events of episodic ejection. The time variability of W43-MM1 outflows is a general trend and is more generally observed than in nearby, low- to intermediate-mass star-forming regions. The typical timescale found between two ejecta, about 500 yr, is consistent with that found in nearby protostars. If ejection episodicity reflects variability in the accretion process, either protostellar accretion is more variable or episodicity is easier to detect in high-mass star-forming regions than in nearby clouds. The timescale found between accretion events could be resulting from disk instabilities, associated with bursts of inflowing gas arising from the dynamical environment of high-mass star-forming cores.