论文标题

流体动力欧拉对准系统中的单向羊群II:奇异模型

Unidirectional flocks in hydrodynamic Euler Alignment system II: Singular models

论文作者

Lear, Daniel, Shvydkoy, Roman

论文摘要

在本说明中,我们继续研究具有强烈奇异的通信内核的流体动力欧拉对准系统$ ϕ(x):= | x |^{ - (n+α)} $ for $α\ in(0,2)$。解决方案描述了管理羊群多维集体行为的代理的单向平行运动。在这里,我们考虑$ 1 <α<2 $的范围,并建立平滑解决方案的全球规律性,以及对它们长时间动态的完整描述。具体而言,我们发展了这些溶液的植入理论,并显示了与速度快速一致的速度场的长期收敛。

In this note we continue our study of unidirectional solutions to hydrodynamic Euler alignment systems with strongly singular communication kernels $ϕ(x):=|x|^{-(n+α)}$ for $α\in(0,2)$. The solutions describe unidirectional parallel motion of agents governing multi-dimensional collective behavior of flocks. Here, we consider the range $1<α<2$ and establish the global regularity of smooth solutions, together with a full description of their long time dynamics. Specifically, we develop the flocking theory of these solutions and show long time convergence to traveling wave with rapidly aligned velocity field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源