论文标题
picard gropoids和$γ$ - 类别
Picard groupoids and $Γ$-categories
论文作者
论文摘要
在本文中,我们构建了一个相干交换性picard类的对称单体封闭模型类别。我们将另一个模型类别结构构造在(小)置换类别的类别的类别上,该类别的纤毛物体是(置换)picard groupoids。主要结果是Segal的神经函子在两个上述模型类别之间诱导了quillen等效性。我们的主要结果暗示了Picard Glopoids模型稳定同型一类型的经典结果。
In this paper we construct a symmetric monoidal closed model category of coherently commutative Picard groupoids. We construct another model category structure on the category of (small) permutative categories whose fibrant objects are (permutative) Picard groupoids. The main result is that the Segal's nerve functor induces a Quillen equivalence between the two aforementioned model categories. Our main result implies the classical result that Picard groupoids model stable homotopy one-types.