论文标题

刚性本地系统和有限的通用线性组

Rigid local systems and finite general linear groups

论文作者

Katz, Nicholas M., Tiep, Pham Huu

论文摘要

We use hypergeometric sheaves on $G_m/F_q$, which are particular sorts of rigid local systems, to construct explicit local systems whose arithmetic and geometric monodromy groups are the finite general linear groups $GL_n(q)$ for any $n \ge 2$ and and any prime power $q$, so long as $q > 3$ when $n=2$.本文继续一项计划,即发现简单的(在简单地记住的意义上)指数级的家族,其单型群是某些有限的谎言类型组,请参见。 [gr],[kt1],[kt2],[kt3]用于(某些)有限的符号和统一组,或某些零星群体,请参见。 [KRL],[KRLT1],[KRLT2],[KRLT3]。本文的新颖性是以这种超几何学方式获得$ gl_n(q)$。然后,回调构造会在$ a^1/f_q $上产生本地系统,其几何单型组为$ sl_n(q)$。这些结果是为了恢复Abhyankar的结构。

We use hypergeometric sheaves on $G_m/F_q$, which are particular sorts of rigid local systems, to construct explicit local systems whose arithmetic and geometric monodromy groups are the finite general linear groups $GL_n(q)$ for any $n \ge 2$ and and any prime power $q$, so long as $q > 3$ when $n=2$. This paper continues a program of finding simple (in the sense of simple to remember) families of exponential sums whose monodromy groups are certain finite groups of Lie type, cf. [Gr], [KT1], [KT2], [KT3] for (certain) finite symplectic and unitary groups, or certain sporadic groups, cf. [KRL], [KRLT1], [KRLT2], [KRLT3]. The novelty of this paper is obtaining $GL_n(q)$ in this hypergeometric way. A pullback construction then yields local systems on $A^1/F_q$ whose geometric monodromy groups are $SL_n(q)$. These turn out to recover a construction of Abhyankar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源