论文标题

加利福尼亚分子云的X形星云中星形丝状细丝的碎片化

Fragmentation of star-forming filaments in the X-shape Nebula of the California molecular cloud

论文作者

Zhang, Guo Yin, Andre, Ph., Menshchikov, A., Wang, Ke

论文摘要

稠密的分子丝是恒星形成过程的核心,但是尚不清楚它们碎裂成prestellar岩心的详细方式。在这里,我们研究了加利福尼亚MC的X形星云区域中几个星形细丝的碎裂性能和动态状态,以阐明这个问题。我们使用了来自Herschel的多波长远红外图像,以及getsources and GetFilaments提取方法来识别密集的内核和细丝并得出其基本特性。我们还使用了$ \ rm ^{13} CO(2-1)$从SMT 1000万望远镜发射的地图来限制细丝的动态状态。我们确定了10条细丝以及57个密集的核心。两个恒星形成的细丝(#8和#10)脱颖而出,因为它们携带了典型的核心间距为$ \ sim $ 0.15 PC的典型核心间距。这两个细丝具有热临界线质量,不是静态的。细丝〜8表现出突出的横向速度梯度,这表明它正在从父云气管中积聚气体。在这两种情况下,观察到的(投影)核心间距都类似于细丝宽度,并且比$ \ sim \的规范分离明显短,这是经典圆柱体碎片理论预测的细丝宽度的$ 4倍。我们建议将气体连续积聚在两个恒星形成细丝上,以及细丝的几何弯曲,可能是观察到的核心间距。我们的发现表明,分子丝的特征片段片段对来自母云的外部扰动非常敏感,例如环境材料的重力积聚。

Dense molecular filaments are central to the star formation process, but the detailed manner in which they fragment into prestellar cores is not yet well understood. Here, we investigate the fragmentation properties and dynamical state of several star-forming filaments in the X-shape Nebula region of the California MC, in an effort to shed some light on this issue. We used multi-wavelength far-infrared images from Herschel and the getsources and getfilaments extraction methods to identify dense cores and filaments and derive their basic properties. We also used a map of $\rm ^{13}CO (2-1)$ emission from SMT 10m submillimeter telescope to constrain the dynamical state of the filaments. We identified 10 filaments, as well as 57 dense cores. Two star-forming filaments (# 8 and # 10) stand out in that they harbor quasi-periodic chains of dense cores with a typical projected core spacing of $\sim$0.15 pc. These two filaments have thermally supercritical line masses and are not static. Filament~8 exhibits a prominent transverse velocity gradient, suggesting that it is accreting gas from the parent cloud gas reservoir. In both cases, the observed (projected) core spacing is similar to the filament width and significantly shorter than the canonical separation of $\sim \,$4 times the filament width predicted by classical cylinder fragmentation theory. We suggest that continuous accretion of gas onto the two star-forming filaments, as well as geometrical bending of the filaments, may account for the observed core spacing. Our findings suggest that the characteristic fragmentation lengthscale of molecular filaments is quite sensitive to external perturbations from the parent cloud, such as gravitational accretion of ambient material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源