论文标题

在高性能计算平台上优化Lux-Zeplin暗物质实验的软件

Optimization of Software on High Performance Computing Platforms for the LUX-ZEPLIN Dark Matter Experiment

论文作者

Ayyar, Venkitesh, Bhimji, Wahid, Monzani, Maria Elena, Naylor, Andrew, Patton, Simon, Tull, Craig E.

论文摘要

高能物理实验(例如Lux-Zeplin暗物质实验)在运行高性能计算资源时会面临独特的挑战。在本文中,我们描述了一些策略,以借助分析工具来优化模拟代码的内存使用情况。我们采用了这种方法,并实现了10-30 \%的记忆力。尽管这是在LZ实验的背景下进行的,但它对其他HEP实验代码具有更广泛的适用性,这些实验代码在现代计算机体系结构上面临这些挑战。

High Energy Physics experiments like the LUX-ZEPLIN dark matter experiment face unique challenges when running their computation on High Performance Computing resources. In this paper, we describe some strategies to optimize memory usage of simulation codes with the help of profiling tools. We employed this approach and achieved memory reduction of 10-30\%. While this has been performed in the context of the LZ experiment, it has wider applicability to other HEP experimental codes that face these challenges on modern computer architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源