论文标题
潜在变量的后比率估计
Posterior Ratio Estimation of Latent Variables
论文作者
论文摘要
密度比估计值吸引了机器学习社区的关注,因为它可以比较两个数据集的基本分布。但是,在某些应用程序中,我们要比较观察值的随机变量的分布。在本文中,我们研究了估计潜在变量两个后验概率密度函数之间比率的问题。特别是,我们假设可以通过参数模型对后比率函数充分x型,然后使用观察到的信息和先前的样本来估计。我们证明了我们的估计值的一致性以及估计参数的渐近正态性,这是倾向于无穷大的先前样品的数量。最后,我们使用数值实验来验证我们的理论,并通过一些现实世界应用来证明该方法的实用性。
Density Ratio Estimation has attracted attention from the machine learning community due to its ability to compare the underlying distributions of two datasets. However, in some applications, we want to compare distributions of random variables that are \emph{inferred} from observations. In this paper, we study the problem of estimating the ratio between two posterior probability density functions of a latent variable. Particularly, we assume the posterior ratio function can be well-approximated by a parametric model, which is then estimated using observed information and prior samples. We prove the consistency of our estimator and the asymptotic normality of the estimated parameters as the number of prior samples tending to infinity. Finally, we validate our theories using numerical experiments and demonstrate the usefulness of the proposed method through some real-world applications.