论文标题
噪音面部的面部属性胶囊超级分辨率
Facial Attribute Capsules for Noise Face Super Resolution
论文作者
论文摘要
现有的面部超分辨率(SR)方法主要假设输入图像是无噪声的。当将输入图像始终被噪声污染的真实情况下时,他们的性能会大大降低。在本文中,我们提出了一个面部属性胶囊网络(FACN)来处理嘈杂面部图像的高规模超分辨率的问题。胶囊是一组神经元,其活性向量模拟了同一实体的不同特性。受胶囊概念的启发,我们提出了面部信息的综合表示模型,该模型称为面部属性胶囊(FAC)。在SR处理中,我们首先从输入LR面上产生了一组FAC,然后从这组FACS中重建了人力资源面。为了有效地提高FAC对噪声的鲁棒性,我们通过综合学习策略在语义,概率和面部属性中产生FAC。每个FAC可以分为两个子胶囊:语义胶囊(SC)和概率胶囊(PC)。他们从语义表示和概率分布的两个方面详细描述了一个明确的面部属性。 FACS组通过属性 - 触发方式将图像作为面部属性信息和概率空间中面部属性信息的组合。各种FACS可以更好地结合面部先验信息,以生成面部图像,并具有细粒度的语义属性。广泛的基准实验表明,我们的方法可实现出色的幻觉结果,并且优于最低分辨率(LR)噪声面图像超级分辨率的最先进。
Existing face super-resolution (SR) methods mainly assume the input image to be noise-free. Their performance degrades drastically when applied to real-world scenarios where the input image is always contaminated by noise. In this paper, we propose a Facial Attribute Capsules Network (FACN) to deal with the problem of high-scale super-resolution of noisy face image. Capsule is a group of neurons whose activity vector models different properties of the same entity. Inspired by the concept of capsule, we propose an integrated representation model of facial information, which named Facial Attribute Capsule (FAC). In the SR processing, we first generated a group of FACs from the input LR face, and then reconstructed the HR face from this group of FACs. Aiming to effectively improve the robustness of FAC to noise, we generate FAC in semantic, probabilistic and facial attributes manners by means of integrated learning strategy. Each FAC can be divided into two sub-capsules: Semantic Capsule (SC) and Probabilistic Capsule (PC). Them describe an explicit facial attribute in detail from two aspects of semantic representation and probability distribution. The group of FACs model an image as a combination of facial attribute information in the semantic space and probabilistic space by an attribute-disentangling way. The diverse FACs could better combine the face prior information to generate the face images with fine-grained semantic attributes. Extensive benchmark experiments show that our method achieves superior hallucination results and outperforms state-of-the-art for very low resolution (LR) noise face image super resolution.