论文标题
在正规化的拓扑配置中
On a topological counterpart of regularization for holonomic D-modules
论文作者
论文摘要
在复杂的歧管上,将常规全体d模块类别的嵌入到自动型D模型中的类别中具有左icar型函数$ \ MATHCAL {M} \ MAPSTO \ MAPSTO \ MATCAL {M MATHCAL {M} _ {\ MATHRM {REG}} $,称为常规化。回想一下,$ \ Mathcal {M} _ {\ Mathrm {reg}} $由常规的Riemann-Hilbert通讯从$ \ Mathcal {M} $的De Rham复合物中重建。同样,在拓扑空间上,嵌入束带中的Ind-Shaves中具有左准内式函数,称之为这里的隔离化。不规则的riemann-hilbert对应关系交织在一起。在这里,我们研究了它们的一些特性。特别是,我们提供了一种用于构造增强专业化和微量定位的细菌公式。
On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $\mathcal{M}\mapsto\mathcal{M}_{\mathrm{reg}}$, called regularization. Recall that $\mathcal{M}_{\mathrm{reg}}$ is reconstructed from the de Rham complex of $\mathcal{M}$ by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of their properties. In particular, we provide a germ formula for the sheafification of enhanced specialization and microlocalization.