论文标题

主要理想的激进分子和Dedekind领域的班级组

Radicals of principal ideals and the class group of a Dedekind domain

论文作者

Spirito, Dario

论文摘要

对于Dedekind域$ D $,令$ \ Mathcal {p}(d)$是$ d $的理想集,这些理想是主要理想的。我们表明,如果$ d,d'US是Dedekind域,并且在$ \ Mathcal {p}(d)$和$ \ Mathcal {p}(d')$之间存在订单同构,那么$ d $和$ d'$的类等级是相同的。

For a Dedekind domain $D$, let $\mathcal{P}(D)$ be the set of ideals of $D$ that are radical of a principal ideal. We show that, if $D,D'$ are Dedekind domains and there is an order isomorphism between $\mathcal{P}(D)$ and $\mathcal{P}(D')$, then the rank of the class groups of $D$ and $D'$ is the same.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源