论文标题

是什么限制了量子计算机的模拟?

What limits the simulation of quantum computers?

论文作者

Zhou, Yiqing, Stoudenmire, E. Miles, Waintal, Xavier

论文摘要

当务之急是很难经典地模拟有用的量子计算机。否则,可以将古典计算机用于量子设想的应用程序。完美的量子计算机毫无疑问地很难模拟:所需的经典资源随量子数量$ n $或电路的深度$ d $而成倍增长。但是,实际的量子计算设备的特征是呈指数衰减的保真度$ \ MATHCAL {F} \ SIM(1-ε)^{nd} $,其每个操作的错误率$ε$每个操作的每个操作均为$ \ \%$ \%\%$ \%$。在这项工作中,我们证明可以以完美的量子计算机所需的一小部分成本来模拟真实的量子计算机。我们的算法使用矩阵乘积状态(MPS)压缩量子波函数的表示,该状态非常准确地捕获纠缠较低至中度的状态。该压缩引入了有限的错误率$ε$,因此算法紧密模仿了实际量子计算设备的行为。我们算法的计算时间仅通过$ n $和$ d $线性增加。我们用一个与二维晶格连接的量子位的随机电路进行了模拟来说明我们的算法。我们发现,$ε$可以在计算电源中以多项式成本降低至最小错误$ε_\ infty $。以下$ε_\ infty $需要使用$ε_\ infty/ε$呈指数增加的计算资源。对于$ n = 54 $ Qubits和带有控制Z门的电路的二维数组,可以在几个小时内在笔记本电脑上获得比最先进设备的错误率更好。对于更复杂的门,例如交换门,然后进行受控旋转,对于类似的计算时间,错误率增加了三个因子。

It is imperative that useful quantum computers be very difficult to simulate classically; otherwise classical computers could be used for the applications envisioned for the quantum ones. Perfect quantum computers are unarguably exponentially difficult to simulate: the classical resources required grow exponentially with the number of qubits $N$ or the depth $D$ of the circuit. Real quantum computing devices, however, are characterized by an exponentially decaying fidelity $\mathcal{F} \sim (1-ε)^{ND}$ with an error rate $ε$ per operation as small as $\approx 1\%$ for current devices. In this work, we demonstrate that real quantum computers can be simulated at a tiny fraction of the cost that would be needed for a perfect quantum computer. Our algorithms compress the representations of quantum wavefunctions using matrix product states (MPS), which capture states with low to moderate entanglement very accurately. This compression introduces a finite error rate $ε$ so that the algorithms closely mimic the behavior of real quantum computing devices. The computing time of our algorithm increases only linearly with $N$ and $D$. We illustrate our algorithms with simulations of random circuits for qubits connected in both one and two dimensional lattices. We find that $ε$ can be decreased at a polynomial cost in computing power down to a minimum error $ε_\infty$. Getting below $ε_\infty$ requires computing resources that increase exponentially with $ε_\infty/ε$. For a two dimensional array of $N=54$ qubits and a circuit with Control-Z gates, error rates better than state-of-the-art devices can be obtained on a laptop in a few hours. For more complex gates such as a swap gate followed by a controlled rotation, the error rate increases by a factor three for similar computing time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源