论文标题

块结构的整数和线性编程在强度多项式和接近线性时间

Block-Structured Integer and Linear Programming in Strongly Polynomial and Near Linear Time

论文作者

Cslovjecsek, Jana, Eisenbrand, Friedrich, Hunkenschröder, Christoph, Rohwedder, Lars, Weismantel, Robert

论文摘要

我们考虑整数和线性编程问题,线性约束表现出(递归)块结构:如果删除了少量约束,则该问题将问题分解为独立且有效解决的子问题。一个重要的例子是$ n $折叠的整数编程问题及其概括,这些问题在最近的文献中受到了很大的关注。这些问题的先前已知算法基于量身定制的整数编程局部搜索框架的增强框架。在本文中,我们提出了一种不同的方法。我们的算法依赖于参数搜索和新的接近界限。我们表明,可以通过诺顿,Plotkin和Tardos的参数搜索框架与Megiddo的多维搜索技术进行改编,可以通过适应参数搜索框架来有效地解决块结构的线性编程。这也构成了我们的整数编程案例算法的子例程,它通过解决了强烈的放松。然后,我们表明,对于此放松的任何给定的最佳顶点解决方案,在$ \ ell_1 $ distance中都有一个最佳整数解决方案,而与问题的维度无关。反过来,这使我们能够有效地找到最佳的整数解决方案。我们将技术应用于整数和线性编程,并使用$ n $折叠结构或有限的双treedeppth,这两个基准问题。我们获得了这些情况下的第一个算法,这些算法在问题的维度和强烈多项式中都接近线性。此外,与增强算法不同,我们的方法高度可行。

We consider integer and linear programming problems for which the linear constraints exhibit a (recursive) block-structure: The problem decomposes into independent and efficiently solvable sub-problems if a small number of constraints is deleted. A prominent example are $n$-fold integer programming problems and their generalizations which have received considerable attention in the recent literature. The previously known algorithms for these problems are based on the augmentation framework, a tailored integer programming variant of local search. In this paper we propose a different approach. Our algorithm relies on parametric search and a new proximity bound. We show that block-structured linear programming can be solved efficiently via an adaptation of a parametric search framework by Norton, Plotkin, and Tardos in combination with Megiddo's multidimensional search technique. This also forms a subroutine of our algorithm for the integer programming case by solving a strong relaxation of it. Then we show that, for any given optimal vertex solution of this relaxation, there is an optimal integer solution within $\ell_1$-distance independent of the dimension of the problem. This in turn allows us to find an optimal integer solution efficiently. We apply our techniques to integer and linear programming with $n$-fold structure or bounded dual treedepth, two benchmark problems in this field. We obtain the first algorithms for these cases that are both near-linear in the dimension of the problem and strongly polynomial. Moreover, unlike the augmentation algorithms, our approach is highly parallelizable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源