论文标题
在稳定过程驱动的一类半线性随机演化方程的有界温和解决方案上
On bounded mild solutions for a class of semilinear stochastic evolution equation driven by stable process
论文作者
论文摘要
我们研究了由LP结合的轻度溶液的存在和独特性,用于一类电子线性随机演变的方程式,该方程是由真正的lévy过程驱动的,而没有真正的gaussian组件,而没有正方形的gaussian组件,例如通过稳定的过程通过侵扰方法与大型和小型跳跃分离出稳定的过程,将其与古典和简单的简单的Banach固定点分开;在本地Lipschitz下,持有人,系数上的线性生长条件。
We study the existence and uniqueness of Lp-bounded mild solutions for a class ofsemilinear stochastic evolutions equations driven by a real Lévy processes withoutGaussian component not square integrable for instance the stable process through atruncation method by separating the big and small jumps together with the classicaland simple Banach fixed point theorem ; under local Lipschitz, Holder, linear growthconditions on the coefficients.