论文标题

学习公平评分功能:在基于ROC的公平限制下排名

Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints

论文作者

Vogel, Robin, Bellet, Aurélien, Clémençon, Stephan

论文摘要

AI的许多应用涉及使用其属性的学习功能对个体进行评分。然后,这些预测风险得分根据分数是否超过一定阈值来做出决策,这可能会根据上下文而异。在信贷贷款和医学诊断等关键应用程序中授予此类系统的代表团水平将在很大程度上取决于如何回答公平问题。在本文中,我们研究了从二进制标记的数据中学习评分功能的问题,这是一项经典的学习任务,称为两部分排名。我们认为,在这种情况下,ROC曲线的功能性质是排名准确性的黄金标准度量,它导致了几种制定公平约束的方式。我们根据AUC和ROC曲线介绍了公平定义的一般家庭,并表明我们的基于ROC的约束可以进行实例化,以便通过阈值得分函数获得的分类函数满足所需阈值范围的分类函数。我们建立了在此类约束下学习的评分功能,设计实用学习算法的概括范围,并显示了我们与真实和合成数据的数值实验的方法。

Many applications of AI involve scoring individuals using a learned function of their attributes. These predictive risk scores are then used to take decisions based on whether the score exceeds a certain threshold, which may vary depending on the context. The level of delegation granted to such systems in critical applications like credit lending and medical diagnosis will heavily depend on how questions of fairness can be answered. In this paper, we study fairness for the problem of learning scoring functions from binary labeled data, a classic learning task known as bipartite ranking. We argue that the functional nature of the ROC curve, the gold standard measure of ranking accuracy in this context, leads to several ways of formulating fairness constraints. We introduce general families of fairness definitions based on the AUC and on ROC curves, and show that our ROC-based constraints can be instantiated such that classifiers obtained by thresholding the scoring function satisfy classification fairness for a desired range of thresholds. We establish generalization bounds for scoring functions learned under such constraints, design practical learning algorithms and show the relevance our approach with numerical experiments on real and synthetic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源