论文标题

临界维度中非线性随机热方程系统的几乎所有点的极性

Polarity of almost all points for systems of non-linear stochastic heat equations in the critical dimension

论文作者

Dalang, Robert C., Mueller, Carl, Xiao, Yimin

论文摘要

我们将矢量值解决方案$ u(t,x)\ in \ mathbb {r}^d $ in到具有乘法噪声的非线性随机加热方程的系统:\ begin {equation*} \ frac {\ partial} {\ partial} {\ partial t} {\ partial t} u(t,x)+σ(u(t,x))\ dot {w}(t,x)。 \ end {equation*}在这里$ t \ geq 0 $,$ x \ in \ mathbb {r} $和$ \ dot {w}(t,x)$是$ \ mathbb {r}^d $ - valuew $ valued-valued时空白噪声。我们说,如果\ begin {equation*} p \ {u(t,x)= z \ text {对于某些$ t> 0 $和$ x \ in \ mathbb {r} $} $} $} = 0。 \ end {equation*}我们表明,在关键尺寸$ d = 6 $中,几乎所有点$ \ m athbb {r}^d $ is polar is polar。

We study vector-valued solutions $u(t,x)\in\mathbb{R}^d$ to systems of nonlinear stochastic heat equations with multiplicative noise: \begin{equation*} \frac{\partial}{\partial t} u(t,x)=\frac{\partial^2}{\partial x^2} u(t,x)+σ(u(t,x))\dot{W}(t,x). \end{equation*} Here $t\geq 0$, $x\in\mathbb{R}$ and $\dot{W}(t,x)$ is an $\mathbb{R}^d$-valued space-time white noise. We say that a point $z\in\mathbb{R}^d$ is polar if \begin{equation*} P\{u(t,x)=z\text{ for some $t>0$ and $x\in\mathbb{R}$}\}=0. \end{equation*} We show that in the critical dimension $d=6$, almost all points in $\mathbb{R}^d$ are polar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源