论文标题

Banach代数上乘法运算符的弱顺序特性

Weak Sequential Properties of the Multiplication Operators on Banach Algebras

论文作者

Oktay, Onur

论文摘要

让$ a $为Banach代数。对于$ f \在a^{\ ast} $中,我们检查了众所周知的映射$ t_f:a \ to a^{\ ast} $,$ t_f(a)= fa $的弱顺序属性,其中$ fa \ in a^{\ ast} $在$ fa(x)中定义了$ fa(x)= f(ax)$ a $ in $ a $ a $ a $ a $ for a^{\ ast} $。我们提供等同的条件,何时$ t_f $在a^{\ ast} $中的每一个$ f \以及当$ t_f $映射薄弱的预先计算集合到a^{\ ast} $中的每个$ f \时。我们的结果在Banach Space $ x $上的紧凑型操作员$ k(x)$的代数申请。

Let $A$ be a Banach algebra. For $f\in A^{\ast}$, we inspect the weak sequential properties of the well-known map $T_f:A\to A^{\ast}$, $T_f(a) = fa$, where $fa\in A^{\ast}$ is defined by $fa(x) = f(ax)$ for all $x\in A$. We provide equivalent conditions for when $T_f$ is completely continuous for every $f\in A^{\ast}$, and for when $T_f$ maps weakly precompact sets onto L-sets for every $f\in A^{\ast}$. Our results have applications to the algebra of compact operators $K(X)$ on a Banach space $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源