论文标题

可扩展的贝叶斯优化

Scalable Constrained Bayesian Optimization

论文作者

Eriksson, David, Poloczek, Matthias

论文摘要

在黑框约束下,高维黑框功能的全局优化是机器学习,控制和工程的一项普遍任务。这些问题是具有挑战性的,因为可行的集合通常是非凸面,而且很难找到,除了维数的诅咒和基础函数的异质性。特别是,这些特征极大地影响了贝叶斯优化方法的性能,否则这些特征已成为未约束环境中样本有效优化的事实上标准,使从业者具有进化策略或启发式方法。我们提出了可扩展的约束贝叶斯优化(SCBO)算法,该算法克服了上述挑战,并将贝叶斯优化的适用性推向了远远超出最先进的挑战。全面的实验评估表明,SCBO在各种基准上取得了出色的成果。为此,我们提出了两个新的控制问题,我们期望对科学界具有独立价值。

The global optimization of a high-dimensional black-box function under black-box constraints is a pervasive task in machine learning, control, and engineering. These problems are challenging since the feasible set is typically non-convex and hard to find, in addition to the curses of dimensionality and the heterogeneity of the underlying functions. In particular, these characteristics dramatically impact the performance of Bayesian optimization methods, that otherwise have become the de facto standard for sample-efficient optimization in unconstrained settings, leaving practitioners with evolutionary strategies or heuristics. We propose the scalable constrained Bayesian optimization (SCBO) algorithm that overcomes the above challenges and pushes the applicability of Bayesian optimization far beyond the state-of-the-art. A comprehensive experimental evaluation demonstrates that SCBO achieves excellent results on a variety of benchmarks. To this end, we propose two new control problems that we expect to be of independent value for the scientific community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源