论文标题
静态红色矮人的相干无线电发射指示星形行星相互作用
Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction
论文作者
论文摘要
低频($ν\ Lessim 150 \,$ MHz)预计恒星无线电发射将起源于高度与恒星半径相当的高度。太阳的这种排放已用于研究冠状结构,质量驱逐,行星周围的空间天气条件(Schwenn 2006)。搜索其他恒星的低频排放仅检测到一位活跃的耀斑明星(Lynch等,2017),这并不代表更广阔的恒星种群。在这里,我们报告了银河系中最常见的恒星类型(红色矮人或光谱类M)的静态恒星的低频无线电发射的检测。发射的特征与行星极光排放的特征相似(Zarka 1998)(例如木星的decametric降低),这表明冠状结构是由血浆密度低的全球磁层主导的冠状结构。我们的结果表明,电量Aurorae的大规模电流在各种质量和大气成分中运行,从陆地行星到主要恒星。 GJ 1151的缓慢旋转无法产生产生观察到的无线电发射所需的Poynting通量,但可以起源于其磁层等离子体与短期外部系外行星的亚alfvénic相互作用。发射特性与理论期望一致(Zarka 2007; Lanza 2009; Saur等人,2013; Turnpenney等人2018)与在$ \ sim 1-5 $日期轨道中与地球大小的行星的相互作用。
Low frequency ($ν\lesssim 150\,$MHz) stellar radio emission is expected to originate in the outer corona at heights comparable to and larger than the stellar radius. Such emission from the Sun has been used to study coronal structure, mass ejections, space-weather conditions around the planets (Schwenn 2006). Searches for low-frequency emission from other stars have only detected a single active flare-star (Lynch et al. 2017) that is not representative of the wider stellar population. Here we report the detection of low-frequency radio emission from a quiescent star, GJ 1151--- a member of the most common stellar type (red dwarf or spectral class M) in the Galaxy. The characteristics of the emission are similar to those of planetary auroral emissions (Zarka 1998) (e.g. Jupiter's decametric emission), suggesting a coronal structure dominated by a global magnetosphere with low plasma density. Our results show that large-scale currents that power radio aurorae operate over a vast range of mass and atmospheric composition, ranging from terrestrial planets to main-sequence stars. The Poynting flux required to produce the observed radio emission cannot be generated by GJ 1151's slow rotation, but can originate in a sub-Alfvénic interaction of its magnetospheric plasma with a short-period exoplanet. The emission properties are consistent with theoretical expectations (Zarka 2007; Lanza 2009; Saur et al. 2013; Turnpenney et al. 2018) for interaction with an Earth-size planet in a $\sim 1-5$ day-long orbit.