论文标题

具有人工线性权重的HERMITE WENO方案用于双曲线保护法

A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws

论文作者

Zhao, Zhuang, Qiu, Jianxian

论文摘要

在本文中,建议使用人工线性权重的五阶Hermite加权基本上非振荡(HWENO)方案,适用于一个和二维双曲保护法,其中零阶和一阶时矩和一阶矩在空间重建中。我们使用高度多项式和几个低度多项式的非线性凸组合构建Hweno方法,并且相关的线性权重可以是任何人为的正数,只要求其求和等于一个。 HWENO方案的一个优点是它的简单性,易于扩展到工程应用中的多维,我们可以使用任何独立于网格几何形状的人工线性权重。另一个优点是使用较少的候选模具解决二维问题的高阶数值精度。此外,HWENO方案仍然保持紧凑性,因为仅需要在重建中需要直接的邻居信息,并且具有很高的效率,可以直接在平滑区域中使用线性近似。为了避免附近有强烈冲击或接触不连续性附近的非物理振荡,我们采用了不连续的Galerkin方法的限制器来控制虚假振荡。进行了一些基准数值测试,以证明所提出的方案的能力。

In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used in the spatial reconstruction. We construct the HWENO methodology using a nonlinear convex combination of a high degree polynomial with several low degree polynomials, and the associated linear weights can be any artificial positive numbers with only requirement that their summation equals one. The one advantage of the HWENO scheme is its simplicity and easy extension to multi-dimension in engineering applications for we can use any artificial linear weights which are independent on geometry of mesh. The another advantage is its higher order numerical accuracy using less candidate stencils for two dimensional problems. In addition, the HWENO scheme still keeps the compactness as only immediate neighbor information is needed in the reconstruction and has high efficiency for directly using linear approximation in the smooth regions. In order to avoid nonphysical oscillations nearby strong shocks or contact discontinuities, we adopt the thought of limiter for discontinuous Galerkin method to control the spurious oscillations. Some benchmark numerical tests are performed to demonstrate the capability of the proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源