论文标题

使用深度学习来改善合奏更顺畅:地下表征的应用

Using Deep Learning to Improve Ensemble Smoother: Applications to Subsurface Characterization

论文作者

Zhang, Jiangjiang, Zheng, Qiang, Wu, Laosheng, Zeng, Lingzao

论文摘要

集合更平滑(ES)已在各个研究领域广泛使用,以减少利益系统的不确定性。但是,使用Kalman公式的常用ES方法,即ES $ _ \ text {(k)} $,当所涉及的概率分布是非高斯时的表现不佳。为了解决这个问题,我们建议使用深度学习(DL)在复杂的数据同化应用程序中得出ES的替代更新方案。在这里,我们表明,基于DL的ES方法,即ES $ _ \ text {(dl)} $,更通用和灵活。在这种新的更新方案中,由相对较小的模型参数和仿真输出的集合生成了大量的训练数据,并且可以保留在训练数据中可能的非高斯特征,并由足够的DL模型捕获。 ES的这种新变体在有或没有高斯假设的两个地下表征问题中进行了测试。结果表明,与ES $ _ \ text {(k)} $相比,ES $ _ \ text {(dl)} $可以产生相似的(在高斯情况下),甚至更好(在非高斯情况下)。 ES $ _ \ text {(dl)} $的成功来自DL在提取复杂的功能(包括非高斯)特征和从大量培训数据中学习非线性关系的力量。尽管在这项工作中,我们仅在参数估计问题中应用ES $ _ \ text {(dl)} $方法,但在实时预测研究中,可以方便地将提出的想法扩展到模型结构不确定性和状态估计的分析。

Ensemble smoother (ES) has been widely used in various research fields to reduce the uncertainty of the system-of-interest. However, the commonly-adopted ES method that employs the Kalman formula, that is, ES$_\text{(K)}$, does not perform well when the probability distributions involved are non-Gaussian. To address this issue, we suggest to use deep learning (DL) to derive an alternative update scheme for ES in complex data assimilation applications. Here we show that the DL-based ES method, that is, ES$_\text{(DL)}$, is more general and flexible. In this new update scheme, a high volume of training data are generated from a relatively small-sized ensemble of model parameters and simulation outputs, and possible non-Gaussian features can be preserved in the training data and captured by an adequate DL model. This new variant of ES is tested in two subsurface characterization problems with or without Gaussian assumptions. Results indicate that ES$_\text{(DL)}$ can produce similar (in the Gaussian case) or even better (in the non-Gaussian case) results compared to those from ES$_\text{(K)}$. The success of ES$_\text{(DL)}$ comes from the power of DL in extracting complex (including non-Gaussian) features and learning nonlinear relationships from massive amounts of training data. Although in this work we only apply the ES$_\text{(DL)}$ method in parameter estimation problems, the proposed idea can be conveniently extended to analysis of model structural uncertainty and state estimation in real-time forecasting studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源