论文标题
无监督的软性识别隐私和负面识别的增强
Unsupervised Enhancement of Soft-biometric Privacy with Negative Face Recognition
论文作者
论文摘要
当前对软生物测量法的研究表明,可以从个体的生物识别模板中推导出对隐私敏感的信息。由于对于许多应用程序,预计这些模板仅用于识别目的,因此这会引发主要的隐私问题。以前的作品着重于监督隐私的解决方案,这些解决方案需要对个人的隐私敏感信息,并将其应用限制为抑制单个和预定的属性。因此,他们没有考虑培训中未考虑的属性。在这项工作中,我们提出了负面的面部识别(NFR),这是一种新颖的面部识别方法,通过在互补(负)域中代表面部模板来增强模板级别的软性识别隐私。虽然普通模板表征了个体的面部特性,但负模板描述了该个人不存在的面部特性。这抑制了存储模板中对隐私敏感的信息。实验是在两个对三个隐私敏感属性的受控和不受控制的方案下捕获的公开可用数据集上进行的。实验表明,我们提出的方法达到的抑制率比以前的工作更高,同时也保持了更高的识别性能。与以前的作品不同,我们的方法不需要对隐私敏感的标签,并且提供了更全面的隐私保护,而不仅限于预定义的属性。
Current research on soft-biometrics showed that privacy-sensitive information can be deduced from biometric templates of an individual. Since for many applications, these templates are expected to be used for recognition purposes only, this raises major privacy issues. Previous works focused on supervised privacy-enhancing solutions that require privacy-sensitive information about individuals and limit their application to the suppression of single and pre-defined attributes. Consequently, they do not take into account attributes that are not considered in the training. In this work, we present Negative Face Recognition (NFR), a novel face recognition approach that enhances the soft-biometric privacy on the template-level by representing face templates in a complementary (negative) domain. While ordinary templates characterize facial properties of an individual, negative templates describe facial properties that does not exist for this individual. This suppresses privacy-sensitive information from stored templates. Experiments are conducted on two publicly available datasets captured under controlled and uncontrolled scenarios on three privacy-sensitive attributes. The experiments demonstrate that our proposed approach reaches higher suppression rates than previous work, while maintaining higher recognition performances as well. Unlike previous works, our approach does not require privacy-sensitive labels and offers a more comprehensive privacy-protection not limited to pre-defined attributes.