论文标题
通用沟通有效的量子阈值秘密共享方案
Universal Communication Efficient Quantum Threshold Secret Sharing Schemes
论文作者
论文摘要
量子秘密共享(QSS)是一个加密协议,其中在当事方的一些当事方之间分配了量子秘密,其中一些当事方的某些子集能够恢复秘密,而某些子集则无法恢复秘密。在标准$((k,n))$量子阈值秘密共享方案中,$ k $或多个当事方的任何子集都可以收回秘密,而其他子集则没有有关秘密的信息。但是,秘密的恢复会导致秘密中每个Qudit的通信成本至少为$ k $ qudits。最近,提出了一类沟通有效的QSS方案,可以通过与$ d \ geq k $ parties联系$ \ frac {d} {d-k+1} $,将$ d \ geq k $ parties与$ d $固定在股票分发之前修复。在本文中,我们提出了更一般的$((k,n))$ Quantum Secret共享方案,其沟通复杂性低。我们的方案是普遍的,因为组合者可以联系任何数量的当事方,以通过沟通效率恢复秘密,即$ k \ leq d \ leq d \ leq n $的任何$ d $可以由组合者选择。这是第一类的通用通信有效量子阈值方案。
Quantum secret sharing (QSS) is a cryptographic protocol in which a quantum secret is distributed among a number of parties where some subsets of the parties are able to recover the secret while some subsets are unable to recover the secret. In the standard $((k,n))$ quantum threshold secret sharing scheme, any subset of $k$ or more parties out of the total $n$ parties can recover the secret while other subsets have no information about the secret. But recovery of the secret incurs a communication cost of at least $k$ qudits for every qudit in the secret. Recently, a class of communication efficient QSS schemes were proposed which can improve this communication cost to $\frac{d}{d-k+1}$ by contacting $d\geq k$ parties where $d$ is fixed prior to the distribution of shares. In this paper, we propose a more general class of $((k,n))$ quantum secret sharing schemes with low communication complexity. Our schemes are universal in the sense that the combiner can contact any number of parties to recover the secret with communication efficiency i.e. any $d$ in the range $k\leq d\leq n$ can be chosen by the combiner. This is the first such class of universal communication efficient quantum threshold schemes.