论文标题

快速反转“无可能”动态系统的可区分可能性

Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems

论文作者

Kersting, Hans, Krämer, Nicholas, Schiegg, Martin, Daniel, Christian, Tiemann, Michael, Hennig, Philipp

论文摘要

无似然(又称基于仿真的)推理问题是昂贵或棘手的远期模型的反问题。 ode反问题通常被视为不含似然的,因为它们的正向图必须由ode求解器在数值上近似。但是,这不是一个基本的约束,而只是经典ode求解器中缺乏功能,这不会返回可能性,而是一个点估计。为了解决这一缺点,我们采用高斯ode滤波(ODES的概率数值方法)来构建与可能性的局部高斯近似值。这种近似产生了(log-)可能性的梯度和黑森的可进行估计量。将这些估计器插入现有的基于梯度的优化和采样方法中,这为ODE反向问题提供了新的求解器。我们证明,这些方法在三个基准系统上的表现优于标准可能性的无可能方法。

Likelihood-free (a.k.a. simulation-based) inference problems are inverse problems with expensive, or intractable, forward models. ODE inverse problems are commonly treated as likelihood-free, as their forward map has to be numerically approximated by an ODE solver. This, however, is not a fundamental constraint but just a lack of functionality in classic ODE solvers, which do not return a likelihood but a point estimate. To address this shortcoming, we employ Gaussian ODE filtering (a probabilistic numerical method for ODEs) to construct a local Gaussian approximation to the likelihood. This approximation yields tractable estimators for the gradient and Hessian of the (log-)likelihood. Insertion of these estimators into existing gradient-based optimization and sampling methods engenders new solvers for ODE inverse problems. We demonstrate that these methods outperform standard likelihood-free approaches on three benchmark-systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源