论文标题
鲁棒性:可靠多个周期性检测的时频挖掘
RobustPeriod: Time-Frequency Mining for Robust Multiple Periodicity Detection
论文作者
论文摘要
周期性检测是时间序列任务的关键一步,包括在许多领域(例如IoT应用程序和自动驾驶数据库管理系统)监视和预测指标。在许多这些应用中,都存在多个周期性组件,并且通常彼此交织。这种动态和复杂的周期性模式使准确的周期性检测变得困难。此外,时间序列中的其他组件(例如趋势,异常值和噪声)也对准确的周期性检测提出了其他挑战。在本文中,我们为多周期性检测提出了一个强大的一般框架。我们的算法应用最大重叠的离散小波变换以将时间序列转换为多个时间频率尺度,以便可以隔离不同的周期性成分。我们通过小波方差对它们进行排名,然后在每个量表下通过我们提出的Huber-treiodogram和Huber-ACF稳健地检测单个周期性。我们严格地证明了Huber-preodogram的理论特性,并证明了Fisher在Huber-treiodogram上的使用进行周期性检测是合理的。为了进一步完善检测期,我们根据Huber-tiotogram图中的Wiener-khinchin定理计算了无偏见的自相关函数,以提高鲁棒性和效率。关于合成和现实世界数据集的实验表明,我们的算法在单个周期性检测和多个周期性检测方面都优于其他流行的算法。
Periodicity detection is a crucial step in time series tasks, including monitoring and forecasting of metrics in many areas, such as IoT applications and self-driving database management system. In many of these applications, multiple periodic components exist and are often interlaced with each other. Such dynamic and complicated periodic patterns make the accurate periodicity detection difficult. In addition, other components in the time series, such as trend, outliers and noises, also pose additional challenges for accurate periodicity detection. In this paper, we propose a robust and general framework for multiple periodicity detection. Our algorithm applies maximal overlap discrete wavelet transform to transform the time series into multiple temporal-frequency scales such that different periodic components can be isolated. We rank them by wavelet variance, and then at each scale detect single periodicity by our proposed Huber-periodogram and Huber-ACF robustly. We rigorously prove the theoretical properties of Huber-periodogram and justify the use of Fisher's test on Huber-periodogram for periodicity detection. To further refine the detected periods, we compute unbiased autocorrelation function based on Wiener-Khinchin theorem from Huber-periodogram for improved robustness and efficiency. Experiments on synthetic and real-world datasets show that our algorithm outperforms other popular ones for both single and multiple periodicity detection.