论文标题
移动网I上的一般相对论流体动力学:静态空间
General Relativistic Hydrodynamics on a Moving-mesh I: Static Spacetimes
论文作者
论文摘要
我们介绍了漫画中实现的静态间距的第一个移动网格一般相对论流体动力学求解器。我们的实现建立在漫画的体系结构和数值相对性Python软件包NRPY+的基础上。我们回顾了一般算法,以求解这些方程式,尤其是详细介绍了步入时间; riemann解决方案跨过移动的面孔;原始变量和保守变量之间的转换;验证和校正流体动力变量;并将指标映射到Voronoi移动网格网格。 我们提出了在24个动力学时间内未磁化的Tolman-Oppenheimer-Volkoff星的数值整合的测试结果。我们证明,以$ 10^6 $网状生成点的分辨率,该恒星稳定,并且其中央密度在此时间表中下降了2%。在较低的分辨率下,中央密度漂移以与所采用的二阶空间重建方案一致的方式增加。这些结果与确切的解决方案非常吻合,我们发现错误行为与具有二阶空间重建的Eulerian代码相似。我们还证明了新代码恢复了同一TOV恒星的基本模式频率,但其初始压力减少了10%
We present the first-ever moving-mesh general relativistic hydrodynamics solver for static spacetimes as implemented in the code, MANGA. Our implementation builds on the architectures of MANGA and the numerical relativity Python package NRPy+. We review the general algorithm to solve these equations and, in particular, detail the time stepping; Riemann solution across moving faces; conversion between primitive and conservative variables; validation and correction of hydrodynamic variables; and mapping of the metric to a Voronoi moving-mesh grid. We present test results for the numerical integration of an unmagnetized Tolman-Oppenheimer-Volkoff star for 24 dynamical times. We demonstrate that at a resolution of $10^6$ mesh generating points, the star is stable and its central density drifts downward by 2% over this timescale. At a lower resolution the central density drift increases in a manner consistent with the adopted second order spatial reconstruction scheme. These results agree well with the exact solutions, and we find the error behavior to be similar to Eulerian codes with second-order spatial reconstruction. We also demonstrate that the new code recovers the fundamental mode frequency for the same TOV star but with its initial pressure depleted by 10%