论文标题
具有最小停留时间限制的开关系统的有效MPC算法
An Efficient MPC Algorithm For Switched Systems with Minimum Dwell Time Constraints
论文作者
论文摘要
本文提出了一种有效的次优预测控制(MPC)算法,该算法受到最小停留时间限制(MTC)的非线性开关系统。尽管由于稳定性,功率和机械限制,大多数物理系统都需要MTC,但MTC的MPC优化问题却难以解决。为了有效解决此类问题,在线MPC优化问题被分解为一系列简单的问题,其中包括两个非线性程序(NLP)和一个圆形步骤,如混合组合最佳控制(MIOC)所做的那样。与将MTC嵌入混合构成线性程序(MILP)中具有组合约束的经典方法不同,我们的建议是使用移动阻滞将MTC嵌入其中一个NLP中。这样的公式可以通过使用最新的NLP问题封锁算法以及使用简单的总和(SUR)方法来加速在线计算。给出了整数近似误差的明确上限。此外,制定了合并的收缩和后退策略来满足闭环MTC。递归可行性是使用$ L $步骤控制不变($ l $ -CI)套件证明的,其中$ L $是最小的停留时间长度。还提出了一种用于计算开关线性系统离线的$ L $ -CI集的算法。数值研究表明,针对经典方法,提出的MPC算法的速度和可比控制性能显着,尽管以亚最佳解决方案为代价。
This paper presents an efficient suboptimal model predictive control (MPC) algorithm for nonlinear switched systems subject to minimum dwell time constraints (MTC). While MTC are required for most physical systems due to stability, power and mechanical restrictions, MPC optimization problems with MTC are challenging to solve. To efficiently solve such problems, the on-line MPC optimization problem is decomposed into a sequence of simpler problems, which include two nonlinear programs (NLP) and a rounding step, as typically done in mixed-integer optimal control (MIOC). Unlike the classical approach that embeds MTC in a mixed-integer linear program (MILP) with combinatorial constraints in the rounding step, our proposal is to embed the MTC in one of the NLPs using move blocking. Such a formulation can speedup on-line computations by employing recent move blocking algorithms for NLP problems and by using a simple sum-up-rounding (SUR) method for the rounding step. An explicit upper bound of the integer approximation error for the rounding step is given. In addition, a combined shrinking and receding horizon strategy is developed to satisfy closed-loop MTC. Recursive feasibility is proven using a $l$-step control invariant ($l$-CI) set, where $l$ is the minimum dwell time step length. An algorithm to compute $l$-CI sets for switched linear systems off-line is also presented. Numerical studies show significant speed-up and comparable control performance of the proposed MPC algorithm against the classical approach, though at the cost of sub-optimal solutions.