论文标题
$δ$ -Laguerre-póllya类中的Appell多项式的双曲线
Hyperbolicity of Appell Polynomials of Functions in the $δ$-Laguerre-Pólya Class
论文作者
论文摘要
我们提出了一种证明与$δ$ -Laguerre-Pólya类中与功能相关的Jensen多项式的方法,它们都具有真正的根源,并演示了如何用于构建属于Laguerre-Pólya类的新功能。作为一种应用,我们确认了Ono的猜想,该猜想断言与Hardy-Ramanujan-Rademacher系列公式的Jensen多项式有关,始终是多重的。
We present a method for proving that Jensen polynomials associated with functions in the $δ$-Laguerre-Pólya class have all real roots, and demonstrate how it can be used to construct new functions belonging to the Laguerre-Pólya class. As an application, we confirm a conjecture of Ono, which asserts that the Jensen polynomials associated with the first term of the Hardy-Ramanujan-Rademacher series formula for the partition function are always hyperbolic.