论文标题

sasakian结构与二阶Ode和Hamiltonian动力学系统相关

Sasakian structure associated with a second order ODE and Hamiltonian dynamical systems

论文作者

Bayrakdar, Tuna

论文摘要

我们在歧管上定义了接触度量结构,对应于二阶的普通微分方程$ d^2y/dx^2 = f(x,y,y,y')$,并显示触点度量结构是Sasakian,并且仅当1型$ \ frac $ \ frac {1} {1} {2} {2}(dp-fdx)$定义一个Poisson结构。我们考虑了由这种泊松结构定义的汉密尔顿动力系统,并表明,哈密顿矢量场是Reeb矢量场的倍数,它承认可以将$ F $视为汉密尔顿功能的兼容Bi-Hamiltonian结构。作为一种特殊情况,我们给出了Reeb矢量场的兼容双汉米尔顿结构,使得结构方程与Heisenberg群体上不变的Coframe的Maurer-Cartan方程相对应,并且自变量可在Hamiltonian功能中起作用。我们还表明,对于某些$ψ$,如果$ f_x+ff_p =ψ(x)$,reeb vector场的整体曲线的正常束的第一类消失了。

We define a contact metric structure on the manifold corresponding to a second order ordinary differential equation $d^2y/dx^2=f(x,y,y')$ and show that the contact metric structure is Sasakian if and only if the 1-form $\frac{1}{2}(dp-fdx)$ defines a Poisson structure. We consider a Hamiltonian dynamical system defined by this Poisson structure and show that the Hamiltonian vector field, which is a multiple of the Reeb vector field, admits a compatible bi-Hamiltonian structure for which $f$ can be regarded as a Hamiltonian function. As a particular case, we give a compatible bi-Hamiltonian structure of the Reeb vector field such that the structure equations correspond to the Maurer-Cartan equations of an invariant coframe on the Heisenberg group and the independent variable plays the role of a Hamiltonian function. We also show that the first Chern class of the normal bundle of an integral curve of a multiple of the Reeb vector field vanishes iff $f_x+ff_p = Ψ(x)$ for some $Ψ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源