论文标题

基于高斯过程的机器人从演示中学习

Gaussian-Process-based Robot Learning from Demonstration

论文作者

Arduengo, Miguel, Colomé, Adrià, Lobo-Prat, Joan, Sentis, Luis, Torras, Carme

论文摘要

赋予更高水平的自主权,需要机器人执行越来越复杂的操作任务。从演示中学习是作为将技能转移到机器人的有希望的范式。它允许从观察人类教师执行的运动中隐式学习任务约束,这可以实现适应性行为。我们从演示方法中介绍了一种基于高斯过程的新型学习。这种概率表示可以概括多个演示,并沿任务的不同阶段编码可变性。在本文中,我们介绍了如何使用高斯流程来从任务空间中的轨迹中有效地学习策略。我们还提出了一种方法,可以有效调整策略以满足新要求,并将机器人行为调整为任务可变性的函数。通过使用Tiago机器人的现实应用程序来说明这种方法。

Endowed with higher levels of autonomy, robots are required to perform increasingly complex manipulation tasks. Learning from demonstration is arising as a promising paradigm for transferring skills to robots. It allows to implicitly learn task constraints from observing the motion executed by a human teacher, which can enable adaptive behavior. We present a novel Gaussian-Process-based learning from demonstration approach. This probabilistic representation allows to generalize over multiple demonstrations, and encode variability along the different phases of the task. In this paper, we address how Gaussian Processes can be used to effectively learn a policy from trajectories in task space. We also present a method to efficiently adapt the policy to fulfill new requirements, and to modulate the robot behavior as a function of task variability. This approach is illustrated through a real-world application using the TIAGo robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源