论文标题

在汽车城的数据驾驶:采矿和建模车队维护数据

Driving with Data in the Motor City: Mining and Modeling Vehicle Fleet Maintenance Data

论文作者

Gardner, Josh, Mroueh, Jawad, Jenuwine, Natalia, Weaverdyck, Noah, Krassenstein, Samuel, Farahi, Arya, Koutra, Danai

论文摘要

底特律市拥有2500多辆汽车的活跃车队,每年的购买量超过500万美元,维护的平均水平超过770万美元。这些数据中的建模模式和趋势对于各种利益相关者尤其重要,尤其是底特律从第9章破产中出现,但是此类数据的结构很复杂,而且该市缺乏专门的资源来深入分析。底特律市的运营和基础设施集团和密歇根大学开始了一项合作,旨在通过分析底特律市车队的数据来满足这种未满足的需求。这项工作提出了一个案例研究,并提供了第一个数据驱动的基准测试,展示了一系列方法来帮助大型车辆维护数据集的数据理解和预测。我们进行了分析,以解决利益相关者提出的三个关键问题,这与发现多变量维护模式有关;预测维护;并预测车辆和车队级成本。我们提出了一种新型算法,即Prism,用于使用张量分解自动化多元顺序数据分析。这项工作是同类方法中的首个方法,既提出了方法和见解,又可以指导未来的公民数据研究。

The City of Detroit maintains an active fleet of over 2500 vehicles, spending an annual average of over \$5 million on purchases and over \$7.7 million on maintenance. Modeling patterns and trends in this data is of particular importance to a variety of stakeholders, particularly as Detroit emerges from Chapter 9 bankruptcy, but the structure in such data is complex, and the city lacks dedicated resources for in-depth analysis. The City of Detroit's Operations and Infrastructure Group and the University of Michigan initiated a collaboration which seeks to address this unmet need by analyzing data from the City of Detroit's vehicle fleet. This work presents a case study and provides the first data-driven benchmark, demonstrating a suite of methods to aid in data understanding and prediction for large vehicle maintenance datasets. We present analyses to address three key questions raised by the stakeholders, related to discovering multivariate maintenance patterns over time; predicting maintenance; and predicting vehicle- and fleet-level costs. We present a novel algorithm, PRISM, for automating multivariate sequential data analyses using tensor decomposition. This work is a first of its kind that presents both methodologies and insights to guide future civic data research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源