论文标题

与短马鞍连接的翻译表面绑定的测量

Measure bound for translation surfaces with short saddle connections

论文作者

Dozier, Benjamin

论文摘要

我们证明,在翻译表面层上的任何Ergodic $ sl_2(r)$ - 不变的概率度量都可以满足强的规律性:具有两个非平行马鞍连接的表面的度量,最多为$ε_1,ε_2$ i是$ o(ε_1^2ε_2ε_2ε_2^ε_2^2^2)$。我们证明了一个更通用的定理,可用于任何数量的短马鞍连接。该证明使用了贝恩布里奇·奇德隆·格鲁什夫斯基 - 莫勒最近引入的地层的多尺度压实和菲利普的代数结果。

We prove that any ergodic $SL_2(R)$-invariant probability measure on a stratum of translation surfaces satisfies strong regularity: the measure of the set of surfaces with two non-parallel saddle connections of length at most $ε_1, ε_2$ is $O(ε_1^2 ε_2^2)$. We prove a more general theorem which works for any number of short saddle connections. The proof uses the multi-scale compactification of strata recently introduced by Bainbridge-Chen-Gendron-Grushevsky-Möller and the algebraicity result of Filip.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源