论文标题

认知论证和抑制任务

Cognitive Argumentation and the Suppression Task

论文作者

Saldanha, Emmanuelle-Anna Dietz, Kakas, Antonis

论文摘要

本文在一个称为认知论证的新框架内解决了建模人类推理的挑战。该框架基于以下假设:人类逻辑推理本质上是辩证论的过程,旨在为人类推理开发一种计算和可实施的认知模型。为了赋予人类认知形式的逻辑推理,框架依赖于认知科学的经验和理论工作的认知原则,以适当地适当地适应AI的一般和抽象的计算论证框架。认知论证的方法是根据伯恩的抑制任务进行评估的,在该任务中,目的不仅是捕获不同人群之间的抑制作用,而且还考虑了每个组内推理的变化。两种主要的认知原理对于捕获人的有条件推理特别重要,以解释参与者的反应:(i)对条件性和/或必要的条件中对条件的解释以及(ii)推理方式是预测性或解释性的。我们认为,认知论证为人类条件推理提供了一个连贯和认知的适当模型,该模型允许在确定的结论和合理的结论之间进行自然区分,从而表现出上下文敏感且可不可避免的推理的重要特征。

This paper addresses the challenge of modeling human reasoning, within a new framework called Cognitive Argumentation. This framework rests on the assumption that human logical reasoning is inherently a process of dialectic argumentation and aims to develop a cognitive model for human reasoning that is computational and implementable. To give logical reasoning a human cognitive form the framework relies on cognitive principles, based on empirical and theoretical work in Cognitive Science, to suitably adapt a general and abstract framework of computational argumentation from AI. The approach of Cognitive Argumentation is evaluated with respect to Byrne's suppression task, where the aim is not only to capture the suppression effect between different groups of people but also to account for the variation of reasoning within each group. Two main cognitive principles are particularly important to capture human conditional reasoning that explain the participants' responses: (i) the interpretation of a condition within a conditional as sufficient and/or necessary and (ii) the mode of reasoning either as predictive or explanatory. We argue that Cognitive Argumentation provides a coherent and cognitively adequate model for human conditional reasoning that allows a natural distinction between definite and plausible conclusions, exhibiting the important characteristics of context-sensitive and defeasible reasoning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源