论文标题

在里奇亚式褪色渠道中,Angle Award Award的用户合作

Angle Aware User Cooperation for Secure Massive MIMO in Rician Fading Channel

论文作者

Wang, Shuai, Wen, Miaowen, Xia, Minghua, Wang, Rui, Hao, Qi, Wu, Yik-Chung

论文摘要

大量多输入多输出通信可以通过将射频信号集中到合法用户来实现高级安全。但是,如果窃听器的位置本身使其通道与合法用户的渠道高度“相似”,则该系统在里奇亚式褪色的环境中很容易受到伤害。为了解决这个问题,本文提出了一个角度意识的用户合作(AAUC)方案,该方案避免了直接传输到受攻击的用户的传输,并依靠其他用户进行合作继电器。所提出的方案仅需要窃听的角度信息,并采用角度保密模型来代表攻击系统的平均保密率。使用此角模型,AAUC问题被证明是非convex,并且提出了连续的凸优化算法,该算法会收敛到Karush-Kuhn-Tucker解决方案。此外,分别针对大型天线和大规模用户的情况得出了封闭形式的解决方案和Bregman的一阶方法。还讨论了扩展到基于智能反射表面的方案的扩展。仿真结果证明了基于AAUC的连续凸优化方案的有效性,并验证了所提出的大规模优化算法的低复杂性。

Massive multiple-input multiple-output communications can achieve high-level security by concentrating radio frequency signals towards the legitimate users. However, this system is vulnerable in a Rician fading environment if the eavesdropper positions itself such that its channel is highly "similar" to the channel of a legitimate user. To address this problem, this paper proposes an angle aware user cooperation (AAUC) scheme, which avoids direct transmission to the attacked user and relies on other users for cooperative relaying. The proposed scheme only requires the eavesdropper's angle information, and adopts an angular secrecy model to represent the average secrecy rate of the attacked system. With this angular model, the AAUC problem turns out to be nonconvex, and a successive convex optimization algorithm, which converges to a Karush-Kuhn-Tucker solution, is proposed. Furthermore, a closed-form solution and a Bregman first-order method are derived for the cases of large-scale antennas and large-scale users, respectively. Extension to the intelligent reflecting surfaces based scheme is also discussed. Simulation results demonstrate the effectiveness of the proposed successive convex optimization based AAUC scheme, and also validate the low-complexity nature of the proposed large-scale optimization algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源