论文标题

象征性的学习和推理,使用嘈杂的数据进行概率锚定

Symbolic Learning and Reasoning with Noisy Data for Probabilistic Anchoring

论文作者

Martires, Pedro Zuidberg Dos, Kumar, Nitesh, Persson, Andreas, Loutfi, Amy, De Raedt, Luc

论文摘要

机器人应该能够从亚符号传感器数据中学习,同时,能够对物体进行推理并在象征性水平上与人类进行交流。这就提出了一个问题,即如何克服符号和符号符号人工智能之间的差距。我们提出了一种基于自下而上对象的语义世界建模方法,该方法使用以对象为中心的代表来锚定。感知锚定过程连续感知传感器数据,并保持与符号表示的对应关系。我们将锚定的定义扩展到处理多模式概率分布,并将结果符号锚定系统与概率逻辑推理器进行推理。此外,我们使用统计关系学习来使锚定框架从嘈杂和亚符号传感器输入中以一组概率的逻辑规则的形式学习符号知识。结合了感知锚定和统计关系学习的结果框架能够维护所有随着时间的看法的语义世界模型,同时仍将逻辑规则的表达性用于推理有关未直接通过感官输入数据直接观察到的对象状态的表达性。为了验证我们的方法,我们一方面证明了系统对多模式概率分布进行概率推理的能力,另一方面,从感知观察产生的锚定对象中学习了概率逻辑规则。随后,学到的逻辑规则用于评估我们提出的概率锚定程序。我们在涉及对象相互作用的设置中演示了我们的系统,其中出现对象闭塞以及需要概率推理以正确锚定对象。

Robotic agents should be able to learn from sub-symbolic sensor data, and at the same time, be able to reason about objects and communicate with humans on a symbolic level. This raises the question of how to overcome the gap between symbolic and sub-symbolic artificial intelligence. We propose a semantic world modeling approach based on bottom-up object anchoring using an object-centered representation of the world. Perceptual anchoring processes continuous perceptual sensor data and maintains a correspondence to a symbolic representation. We extend the definitions of anchoring to handle multi-modal probability distributions and we couple the resulting symbol anchoring system to a probabilistic logic reasoner for performing inference. Furthermore, we use statistical relational learning to enable the anchoring framework to learn symbolic knowledge in the form of a set of probabilistic logic rules of the world from noisy and sub-symbolic sensor input. The resulting framework, which combines perceptual anchoring and statistical relational learning, is able to maintain a semantic world model of all the objects that have been perceived over time, while still exploiting the expressiveness of logical rules to reason about the state of objects which are not directly observed through sensory input data. To validate our approach we demonstrate, on the one hand, the ability of our system to perform probabilistic reasoning over multi-modal probability distributions, and on the other hand, the learning of probabilistic logical rules from anchored objects produced by perceptual observations. The learned logical rules are, subsequently, used to assess our proposed probabilistic anchoring procedure. We demonstrate our system in a setting involving object interactions where object occlusions arise and where probabilistic inference is needed to correctly anchor objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源