论文标题
弱到弱的轻度耦合和耗散动力的第一原理
Weak-to-Strong Light-Matter Coupling and Dissipative Dynamics from First Principles
论文作者
论文摘要
腔介导的光 - 物质耦合可以大大改变分子的光电极和物理化学特性。这些系统的从头算理论预测需要将非扰动,多体电子结构理论方法与空腔量子电动力学和开放量子系统的理论相结合。在这里,我们概括了量子 - 电子密度的功能理论,以说明耗散动力学,并描述弱到较大的偶联制度中耦合的腔体 - 分子相互作用。具体而言,为了建立这种广义技术,我们研究了苯和甲苯在弱到弱的轻度耦合下的激发态动力学和光谱响应。通过调整耦合,我们实现了电子激发态之间的空腔介导的能量转移。可以自然扩展这种广义的量子量子 - 电动力学密度理论处理,以描述任意电磁环境中的空腔介导的相互作用,从而访问相关的光物质可观察物,从而缩小电子结构理论和量子光学的差距。
Cavity-mediated light-matter coupling can dramatically alter opto-electronic and physico-chemical properties of a molecule. Ab initio theoretical predictions of these systems need to combine non-perturbative, many-body electronic structure theory-based methods with cavity quantum electrodynamics and theories of open quantum systems. Here we generalize quantum-electrodynamical density functional theory to account for dissipative dynamics and describe coupled cavity-molecule interactions in the weak-to-strong-coupling regimes. Specifically, to establish this generalized technique, we study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling. By tuning the coupling we achieve cavity-mediated energy transfer between electronic excited states. This generalized ab initio quantum-electrodynamical density functional theory treatment can be naturally extended to describe cavity-mediated interactions in arbitrary electromagnetic environments, accessing correlated light-matter observables and thereby closing the gap between electronic structure theory and quantum optics.