论文标题

视频监视查询

Video Monitoring Queries

论文作者

Koudas, Nick, Li, Raymond, Xarchakos, Ioannis

论文摘要

使用深度学习基础的视频处理方面的最新进展在视频分析中的基本问题(例如框架分类和对象检测)中实现了突破,从而实现了一系列新应用程序。 在本文中,我们研究了视频流上交互式声明性查询处理的问题。特别是,我们引入了一组近似过滤器,以加快涉及特定类型对象(例如汽车,卡车等)的查询,并在视频框架上具有相关的空间关系(例如,卡车剩下的汽车)。生成的过滤器能够快速评估查询谓词是否为真实,以进一步分析框架,或者不考虑框架进一步避免了昂贵的对象检测操作。 我们提出了两类过滤器$ ic $和$ od $的类别,这些过滤器从深层图像分类和对象检测中调整了原则。过滤器利用可扩展的深神经体系结构,易于部署和使用。此外,我们提出了统计查询处理技术来处理涉及视频流上有空间约束对象的汇总查询,并通过实验证明了对所得聚合估计的提高准确性。 这些技术组合构成了一组强大的视频监视查询处理技术。我们证明,在视频流上提出的技术以及声明性查询的应用可以显着提高框架处理速率,并将查询处理加速至少两个数量级。我们介绍了一项彻底的实验研究的结果,该研究利用基准的视频数据集进行了大规模,证明了我们的建议的绩效优势和实际相关性。

Recent advances in video processing utilizing deep learning primitives achieved breakthroughs in fundamental problems in video analysis such as frame classification and object detection enabling an array of new applications. In this paper we study the problem of interactive declarative query processing on video streams. In particular we introduce a set of approximate filters to speed up queries that involve objects of specific type (e.g., cars, trucks, etc.) on video frames with associated spatial relationships among them (e.g., car left of truck). The resulting filters are able to assess quickly if the query predicates are true to proceed with further analysis of the frame or otherwise not consider the frame further avoiding costly object detection operations. We propose two classes of filters $IC$ and $OD$, that adapt principles from deep image classification and object detection. The filters utilize extensible deep neural architectures and are easy to deploy and utilize. In addition, we propose statistical query processing techniques to process aggregate queries involving objects with spatial constraints on video streams and demonstrate experimentally the resulting increased accuracy on the resulting aggregate estimation. Combined these techniques constitute a robust set of video monitoring query processing techniques. We demonstrate that the application of the techniques proposed in conjunction with declarative queries on video streams can dramatically increase the frame processing rate and speed up query processing by at least two orders of magnitude. We present the results of a thorough experimental study utilizing benchmark video data sets at scale demonstrating the performance benefits and the practical relevance of our proposals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源