论文标题

贝叶斯优化的有效推出策略

Efficient Rollout Strategies for Bayesian Optimization

论文作者

Lee, Eric Hans, Eriksson, David, Cheng, Bolong, McCourt, Michael, Bindel, David

论文摘要

贝叶斯优化(BO)是一类样本效率的全局优化方法,其中使用以前的观察为条件的概率模型通过优化采集功能来确定未来的评估。大多数采集功能都是近视,这意味着它们仅考虑下一个功能评估的影响。非侧型采集功能考虑下一个$ h $函数评估的影响,通常是通过推出计算的,其中$ h $ sept of bo的$ h $步骤是模拟的。这些推出的采集功能定义为$ h $维积分,计算和优化价格昂贵。我们表明,准蒙特卡洛,共同随机数和控制变化的结合可显着减轻推出的计算负担。然后,我们制定了一种基于策略搜索的方法,该方法消除了优化推出采集功能的需求。最后,我们讨论了在多模式目标和模型误差的设置中推出策略的定性行为。

Bayesian optimization (BO) is a class of sample-efficient global optimization methods, where a probabilistic model conditioned on previous observations is used to determine future evaluations via the optimization of an acquisition function. Most acquisition functions are myopic, meaning that they only consider the impact of the next function evaluation. Non-myopic acquisition functions consider the impact of the next $h$ function evaluations and are typically computed through rollout, in which $h$ steps of BO are simulated. These rollout acquisition functions are defined as $h$-dimensional integrals, and are expensive to compute and optimize. We show that a combination of quasi-Monte Carlo, common random numbers, and control variates significantly reduce the computational burden of rollout. We then formulate a policy-search based approach that removes the need to optimize the rollout acquisition function. Finally, we discuss the qualitative behavior of rollout policies in the setting of multi-modal objectives and model error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源