论文标题

用于资源受限的物联网设备的联合学习:全景和最先进的

Federated Learning for Resource-Constrained IoT Devices: Panoramas and State-of-the-art

论文作者

Imteaj, Ahmed, Thakker, Urmish, Wang, Shiqiang, Li, Jian, Amini, M. Hadi

论文摘要

如今,设备配备了具有较高处理/计算功能的高级传感器。此外,广泛的互联网可用性可以在传感设备之间进行通信。结果,在边缘设备上生成了大量数据,以驱动互联网(IoT),众包和其他新兴技术。可以预处理,缩放,分类,最终用于使用机器学习(ML)方法预测未来事件的广泛数据。在传统的ML方法中,数据被发送到中央服务器中并处理,该服务器遇到了通信开销,处理延迟,隐私泄漏和安全问题。为了克服这些挑战,可以根据其可用数据和从全球模型中学习的本地培训每个客户。这种分散的学习结构称为联合学习(FL)。但是,在大规模网络中,可能会有具有不同计算资源功能的客户端。这可能会导致FL技术的实施和可伸缩性挑战。在本文中,我们首先介绍了FL的一些最近实施的现实生活应用。然后,我们强调客户客户端的资源限制(例如,内存,带宽和能源预算)的核心挑战。我们最终讨论了与FL相关的开放问题,并突出了有关资源约束设备的FL领域的未来方向。

Nowadays, devices are equipped with advanced sensors with higher processing/computing capabilities. Further, widespread Internet availability enables communication among sensing devices. As a result, vast amounts of data are generated on edge devices to drive Internet-of-Things (IoT), crowdsourcing, and other emerging technologies. The collected extensive data can be pre-processed, scaled, classified, and finally, used for predicting future events using machine learning (ML) methods. In traditional ML approaches, data is sent to and processed in a central server, which encounters communication overhead, processing delay, privacy leakage, and security issues. To overcome these challenges, each client can be trained locally based on its available data and by learning from the global model. This decentralized learning structure is referred to as Federated Learning (FL). However, in large-scale networks, there may be clients with varying computational resource capabilities. This may lead to implementation and scalability challenges for FL techniques. In this paper, we first introduce some recently implemented real-life applications of FL. We then emphasize on the core challenges of implementing the FL algorithms from the perspective of resource limitations (e.g., memory, bandwidth, and energy budget) of client clients. We finally discuss open issues associated with FL and highlight future directions in the FL area concerning resource-constrained devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源