论文标题

活跃的静物与猝灭障碍

Active nematics with quenched disorder

论文作者

Kumar, Sameer, Mishra, Shradha

论文摘要

我们引入了二维主动列与猝灭障碍。我们为缓慢变量的粗粒流体动力方程式编写,即。密度和方向。疾病强度从零调整为大值。来自运动方程的数值解以及使用线性近似的两点方向相关函数的计算结果表明,有序的稳态遵循了从准远程顺序(QLRO)到短距离顺序(SRO)的疾病依赖性交叉。这种交叉是由于存在有限疾病的存在+1/2和-1/2拓扑缺陷所致,这破坏了无关域中的系统。有限疾病减慢了+1/2缺陷的动力学,并导致生长动态较慢。密度和方向场的两点相关函数显示出良好的动态缩放,但对于不同的混乱强度没有静态缩放。我们的发现可以激励实验者验证结果,并在存在猝灭障碍的情况下找到生命和人造的Acolar系统中的应用。

We introduce a two-dimensional active nematic with quenched disorder. We write the coarse-grained hydrodynamic equations of motion for slow variables, viz. density, and orientation. Disorder strength is tuned from zero to large values. Results from the numerical solution of equations of motion as well as the calculation of two-point orientation correlation function using linear approximation show that the ordered steady-state follows a disorder-dependent crossover from quasi long-range order (QLRO) to short-range order (SRO). Such crossover is due to the pinning of +1/2 and -1/2 topological defects in the presence of finite disorder, which breaks the system in uncorrelated domains. Finite disorder slows the dynamics of +1/2 defect, and it leads to slower growth dynamics. The two-point correlation functions for the density and orientation fields show good dynamic scaling but no static scaling for the different disorder strengths. Our findings can motivate experimentalists to verify the results and find applications in living and artificial apolar systems in the presence of a quenched disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源