论文标题

在非线性边界条件下,对热方程的溶液的寿命迅速估计

Sharp estimate of the life span of solutions to the heat equation with a nonlinear boundary condition

论文作者

Hisa, Kotaro

论文摘要

考虑具有非线性边界条件的热方程$ \ partial_t u =ΔU,\ quad x \ in {\ bf r}^n _+,\,\,\,\,\,\,\,\ qquad \ qquad \ ppartial_νu= u^p, r}^n _+,\,\,\,\,t> 0,\ qquad u(x,x,0)=κψ(x),\ quad x \ in d:= \ overline {{\ bf r}^n_+} $ {\ bf r}^n_+:= \ {y \ in {\ bf r}^n:y_n> 0 \} $。让我们用$ t(κψ)$解决这个问题的寿命。我们研究了原始$ψ$的奇异性与足够大的$κ> 0 $的$ψ$与$ t(κψ)$与太空无穷大的$ψ$的行为与$ t(κψ)$之间的关系,对于足够小的$κ> 0 $。此外,我们给出$ t(κψ)$的最佳估计,为$κ\ to \ infty $或$κ\ to+0 $。

Consider the heat equation with a nonlinear boundary condition $$ \partial_t u=Δu,\quad x\in{\bf R}^N_+,\,\,\,t>0,\qquad \partial_νu=u^p, \quad x\in\partial{\bf R}^N_+,\,\,\,t>0,\qquad u(x,0)=κψ(x),\quad x\in D:=\overline{{\bf R}^N_+}, $$ where $N\ge 1$, $p>1$, $κ>0$ and $ψ$ is a nonnegative measurable function in ${\bf R}^N_+ :=\{y\in{\bf R}^N:y_N>0 \}$. Let us denote by $T(κψ)$ the life span of solutions to this problem. We investigate the relationship between the singularity of $ψ$ at the origin and $T(κψ)$ for sufficiently large $κ>0$ and the relationship between the behavior of $ψ$ at the space infinity and $T(κψ)$ for sufficiently small $κ>0$. Moreover, we give an optimal estimate to $T(κψ)$, as $κ\to\infty$ or $κ\to+0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源