论文标题
用简单截断的矫形器产生的horo-和hy狼的覆盖物
Coverings with horo- and hyperballs generated by simply truncated orthoschemes
论文作者
论文摘要
在研究了与简单的冰箱式矫正板相关的Horo和Hythballs在$ n $ n $ dipermenial-dbolic空间$ \ MATHBB {H}^n $($ n = 2,3 $)中的相应覆盖问题($ N $ n = 2,3 $)。 我们以$ 2- $和$ 3- $尺寸的双曲线空间构造,这是由简单截短的Coxeter Orthocheme斜利生成的,我们确定它们最薄的覆盖构型构型及其密度。 我们证明,在双曲平面($ n = 2 $)中,上述最薄的hor的密度覆盖了任意近似于超循环或烟循环密度$ \ frac {\ sqrt {\ sqrt {12}}π$的普遍下限,并属于$ \ mathbb { Coxeter瓷砖密度$ \约1.27297 $,其覆盖密度为$ 1.280 $ $ 1.280 $的$ \。 此外,我们研究了截短的Orthosche \ -Mes $ \ {p,3,6 \} $ $(6 <p <7,〜p \ in \ Mathbb {r})$,其密度函数可在参数$ p \ 6.45962 $,大约1.45962 $ $ 1.266685 $ \ 1.2685 $ \ y MATHBB {r})$中研究了Hyp-hor的覆盖物。这意味着,这种本地最佳的催眠配置可提供比以前确定的$ \约1.27297 $的覆盖密度较小的,但是这种hyp-hor填料配置不能扩展到整个双曲线空间$ \ mathbb {h}^3 $。
After having investigated the packings derived by horo- and hyperballs related to simple frustum Coxeter orthoscheme tilings we consider the corresponding covering problems (briefly hyp-hor coverings) in $n$-dimensional hyperbolic spaces $\mathbb{H}^n$ ($n=2,3$). We construct in the $2-$ and $3-$dimensional hyperbolic spaces hyp-hor coverings that are generated by simply truncated Coxeter orthocheme tilings and we determine their thinnest covering configurations and their densities. We prove that in the hyperbolic plane ($n=2$) the density of the above thinnest hyp-hor covering arbitrarily approximate the universal lower bound of the hypercycle or horocycle covering density $\frac{\sqrt{12}}π$ and in $\mathbb{H}^3$ the optimal configuration belongs to the $\{7,3,6\}$ Coxeter tiling with density $\approx 1.27297$ that is less than the previously known famous horosphere covering density $1.280$ due to L.~Fejes Tóth and K.~Böröczky. Moreover, we study the hyp-hor coverings in truncated orthosche\-mes $\{p,3,6\}$ $(6< p < 7, ~ p\in \mathbb{R})$ whose density function attains its minimum at parameter $p\approx 6.45962$ with density $\approx 1.26885$. That means that this locally optimal hyp-hor configuration provide smaller covering density than the former determined $\approx 1.27297$ but this hyp-hor packing configuration can not be extended to the entirety of hyperbolic space $\mathbb{H}^3$.