论文标题

在$ {\ widetilde {\ mathrm {sl}} _ 2(\ mathbb {r})} $中的渐近高原问题上

On the asymptotic Plateau problem in ${\widetilde{\mathrm{SL}}_2(\mathbb{R})}$

论文作者

Castro-Infantes, Jesús

论文摘要

我们证明了一些不存在的结果,即渐近高原问题的最小和区域最小化表面中的表面$ {\ wideTilde {\ wideRm {\ mathrm {sl}} _ 2(\ \ mathbb {r})} $ a IDENEMER 4,在其渐近性的边界上,均匀的iSormentry组4。另外,我们表明,适当沉浸的最小表面在$ {\ wideTilde {\ mathrm {sl}} _ 2(\ Mathbb {r})} $中包含的两个有界的整个最小图之间,由垂直距离隔开,垂直距离小于$ \ sqrt {1+4+4τ2}π$ dield teend undimal deend。最后,我们简单地将最小表面与有限的总曲率连接起来,这不是图形和一个完整的嵌入式最小表面的家族,这些表面是$ {\ widetilde {\ mathrm {sl}}} _ 2(\ mathbb {r})} $的无孔子。

We prove some non-existence results for the asymptotic Plateau problem of minimal and area minimizing surfaces in the homogeneous space ${\widetilde{\mathrm{SL}}_2(\mathbb{R})}$ with isometry group of dimension 4, in terms of their asymptotic boundary. Also, we show that a properly immersed minimal surface in ${\widetilde{\mathrm{SL}}_2(\mathbb{R})}$ contained between two bounded entire minimal graphs separated by vertical distance less than $\sqrt{1+4τ^2}π$ have multigraphical ends. Finally, we construct simply connected minimal surfaces with finite total curvature which are not graphs and a family of complete embedded minimal surfaces which are non-proper in ${\widetilde{\mathrm{SL}}_2(\mathbb{R})}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源